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Bedform climbing in theory and nature 
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ABSTRACT 

Where bedforms migiate during deposition, they move upward (climb) with respect to the generalized 
sediment surface. Sediment deposited on each lee slope and not eroded during the passage of a 
following trough is left behind as a cross-stratified bed. Because sediment is thus transferred from 
bedforms to underlying strata, bedforms must decrease in cross-sectional area or in number, or both, 
unless sediment lost from bedforms during deposition is replaced with sediment transported from 
outside the depositional area. Where sediment is transported solely by downcurrent migration of two- 
dimensional bedforms, the mean thickness of cross-stratified beds is equal to the decrease in bedform 
cross-sectional area divided by the migration distance over which that size decrease occurs; where 
bedforms migrate more than one spacing while depositing cross-strata, bed thickness is only a 
fraction of bedform height. 

Equations that describe this depositional process explain the downcurrent decrease in size of tidal 
sand waves in St Andrew Bay, Florida, and the downwind decrease in size of transverse aeolian dunes 
on the Oregon coast. Using the same concepts, dunes that deposited the Navajo, De Chelly, and 
Entrada Sandstones are calculated to have had mean heights between several tens and several hundreds 
of metres. 

INTRODUCTION 

Migrating bedforms and their deposits are dramatic 
features rich in geological information (Fig. 1). 
Since 1859, when H. C. Sorby realized that migrating 
bedforms deposit cross-strata like those preserved 
in rocks, geologists have attempted to relate the 
morphology of migrating bedforrns to internal 

structures and external flow conditions. Inferring 
sediment transport directions from orientations of 
cross-strata is a classic technique in bath m~dera 
and ancient environments, and identification of 
depositional environments is commonly based, in 
part, on interpretations of strata deposited by 
migrating bedforms. 

To interpret cross-strata fully, however, requires 
mzmj2wknowJedge of the behaviour of individual 

bedforms. Geologists must understand interactions 
between bedforms during deposifion and erosion. 
For example, as will be discussed below, the thickness 
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of a cross-stratified bed deposited by a migrating 
bedform is controlled as much by differences in the 
sediment transport rate from one bedform to 
another as it is controlled by bedform size. Even 
bedform size depends on interactions between bed- 
forms. 

The analytical study of deposition by migrating 
bedforms was initiated by Allen (1963a, b, 1968, 
1570), w h ~  suggested that cwts of cross-strata are 
deposited by trains of climbing bedforms. The pur- 
pose of this paper is to consider the theory of bed- 
form climbing using a somewhat different approach 
from Allen’s, to make a few simplifying assumptions 
that are most applicable to Iarge two-dimensional 
bedforms, and finally to apply climbing theory to 
three examples in nature: .tidal sand waves in St 
Andrew Bay, F\orida, coastal dunes in Oregon, and 
dune deposits in Permian to Jurassic sandstones of 
the Colorado Plateau (Fig. 1). The main points of 
this paper are that, where certain flow conditions are 
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Fig. 1. Large-scale tabular sets of cross-strata in the Navajo Sandstone at Zion National Park, Utah. The sets are inter- 
preted to have been produced by climbing aeolian draas or large dunes. No dune stoss surfaces are preserved between 
the bounding surfaces of the sets. Bus for scale. 

met: (1) trains of large bedforms decrease in cross- 
sectional area as they deposit cosets of cross-strata; 
( 2 )  large bedforms deposit cross-stratified beds hav- 
ing mean thicknesses that are generally only a small 
fraction of bedform height; and (3 )  sizes of two- 
dimensional bedforms that deposited cross-stratified 
beds can be estimated from bed thickness and down- 
current extent of deposition. 

Bedforms can climb in undirectional or oscillatory 
flows in either air or water, regardless of bedform 
size or shape. The following analysis of bedform 
climbing begins with a general treatment of climbing 
of all periodic bedforms but, for reasons discussed 
below, equations (10-17) and our quantitative con- 
clusions are restricted to large, transverse, two- 
dimensional bedforms and their deposits. However, 
we use the deposits of small two-dimensional bed- 
forms to illustrate qualitative aspects of bedform 
climbing, because deposits of small bedforms are 
more easily observed and photographed. 

DEFINITIONS 

As a bedform migrates, its trough moves through 
space, defining a surface. This surface separates the 
set of strata within the bedform from underlying 
strata and may therefore be called a bounding 

surface (McKee & Weir, 1953). Where bedforms 
migrate downcurrent without net deposition, the 
volume of sediment deposited on lee slopes in a given 
time interval equals the volume of sediment eroded 
from stoss slopes. Hence, except for variations in 
trough elevation from bedform to bedform, the 
bounding surfaces generated by all troughs coincide. 
In a flow where net deposition is occurring, however, 
the volume of sediment deposited on each lee slope 
is greater than the volume eroded from the next stoss 
slope downcurrent. Consequently, bedforms and 
bounding surfaces move upward (climb) with respect 
to the generalized sediment surface, which is defined 
as a smooth surface passing approximately midway 
between troughs and crests (Figs 2, 3A). Where the 
sediment surface slopes downcurrent, as it commonly 
does where deposition occurs, bedforms can climb 
relative to the sediment surface while migrating 
downslope. Sediment deposited on the lee slope of 
one bedform and not eroded during the passage of 
a following bedform trough is left behind as a 
deposit called a pseudostratum (McKee, 1965) or a 
climbing translatent stratum (Hunter, 1977a). The 
deposit is, in general, visibly cross-stratified and thus 
may also be called a cross-stratified bed or a set of 
cross-strata. 

Much of the following discussion is restricted to 
two-dimensional transverse aeolian dunes and to the 
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Fig. 2. Diagram illustrating climbing-bedform para- 
meters. (A) Block diagram showing coordinate axes. (B) 
Cross-section parallel to xz-plane. L is bedform spacing; 
H is bedform height; T is thickness of climbing trans- 
latent stratum; V is direction of bedform migration, with 
components V, and V,; 5 is angle of climb; 7 is height of 
generalized sediment surface. 

class or classes of two-dimensional subaqueous bed- 
forms known as sand waves (Southard, 1975; 
Dalrymple, Knight & Lambiase, 1978), linear mega- 
ripples (Boothroyd & Hubbard, 1975; Hine, 1975), 
type I megaripples (Dalrymple et al., 1978), flat 
dunes (Znamenskaya, 1963), flattened dunes (Pratt & 
Smith, 1972), bars (Costello, 1974), and two- 
dimensional dunes (Costello & Southard, 1981). 
For the purposes of the following discussion these 
bedforms are collectively called sand waves. Hydro- 
dynamic relations between these and other bedforms 
are discussed by the authors above and by Rubin & 
McCulloch (1980). 

ALTERNATIVES TO CLIMBING 

To be complete, any model which explains the origin 
of a sequence of cross-stratified beds must account 
for both the strata and their bounding surfaces. In 
addition, the model must keep to the obvious but 
commonly overlooked constraint, that, where a 
deposit is produced, more sediment is brought in 
than is removed. The bedform climbing model meets 
this constraint by requiring only that the sediment 
transport rate decreases downcurrent or through 
time. Each erosional bounding surface is scoured by a 

Fig. 3. Models for the formation of cosets of cross-strata 
(i.e. sets of cross-stratified beds or sets of climbing rrans- 
latent strata). Models discussed in text. 

migrating bedform trough, and each overlying set of 
cross-strata is deposited by a following bedform. 

Perhaps the conceptually most simple alternative 
to climbing for the formation of a coset of cross- 
strata is the successive progradation of delta-like sand 
bodies across a depositional site (Fig. 3B). This type 
of deposit, which has been modelled in flume experi- 
ments by Jopling (1965) and has been documented 
from sedimentary sequences (Sykes & Brandy, 1976), 
requires sudden rises in the base level of deposition. 
Without such rises in base level, delta progradation 
produces only solitary cross-stratified beds. 

Other alternatives to Allen's (1963a) model of bed- 
form climbing have been proposed by Stride (1965), 
Hemingway & Clarke (1963), and Stokes (1968). 
Unlike bedform climbing, which can be a continuous 
process, the alternatives require alternating periods 
of deposition and truncation. For example, Stride 
suggested that sand waves deposit cross-strata during 
spring tides when current velocities are high. During 
neap tides ripples become the stable bed configura- 
tion, sand-wave crests are smoothed off, and ripple- 
or flat-bedded sands fill sand-wave troughs (Fig. 3D). 
According to Stride, the resulting deposit 'will be a 
three-dimensional complex of current-bedded lenses 
with occasional intercalations of flat or ripple-bedded 
sands.' Moreover, the flat- or ripple-bedded sands 
must form lenses that are as thick as the sets of cross- 
strata and that have a lateral spacing equal to the 
sand-wave spacing (Allen, 1968, fig. 5.36a). Stride's 
model can account for a deposit having these 
characteristics, but it cannot account for cosets of 
cross-strata that do not contain lenses of flat- or 
ripple-bedded sand. 
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Although the planing off of sand-wave crests and 
the filling of troughs is a necessary part of Stride’s 
model, this process is not sufficient to produce a 
deposit thicker than about one-half the height of a 
sand wave. In addition, sediment must be introduced 
to the depositional area at a higher rate than it is 
removed. According to Stride, sediment is brought in 
during spring tides, when sand waves are active. 
During these periods, presumably the transport rate 
decreases downcurrent to allow deposition in the 
form of new sand waves overlying the previously 
formed deposits. These two conditions, sand-wave 
migration and deposition, are precisely the two 
conditions that require sand waves to climb. There- 
fore, when a deposit is produced under conditions 
postulated by Stride, that deposit can be expected to 
include translatent strata deposited by climbing sand 
waves, in addition to lenses of sand deposited in 
sand-wave troughs during neap tides. 

Hemingway & Clarke (1963) accepted bedform 
climbing as a mechanism to deposit tabular cosets 
of cross-strata, but they objected to climbing as a 
mechanism to produce festoon cross-bedding. In- 
Instead, they favoured ‘ pot-holing ’ (Simons, Richard- 
son & Albertson, 1961), a process whereby cross- 
strata are deposited in relatively deep troughs of 
three-dimensional bedforms (Fig. 3C). Without 
bedform climbing, pot-holing is incapable of produc- 
ing cosets thicker than pot-hole depths. However, 
where climbing bedforms are three-dimensional, 
pot-holing can be expected to be an important control 
of the thickness of individual sets. 

Another alternative to bedform climbing was 
proposed by Stokes (1968) to explain the nearly 
parallel bounding surfaces of sets of aeolian cross- 
strata. Stokes suggested that these bounding surfaces 
were formed by erosion down to buried water-table 
surfaces (Fig. 3E). This model has two serious 
problems. First, the migration of some dunes in 
Stokes’ model (his fig. 1) was arbitrarily stopped, 
while other active dunes were arbitrarily drawn 
superimposed on them. In addition to requiring this 
very peculiar dune behaviour, the sets of cross-strata 
Stokes drew are unlike those seen in aeolian sand- 
stones. Because Stokes’ dunes do  not climb, each set 
of cross-strata he drew includes one or more dune 
stoss slopes. In aeolian sandstones, however, pre- 
served stoss slopes are extremely rare. This discrep- 
ancy between the model and the observed strata is a 
serious problem with the water-table model. 

The second problem with the water-table model 
was discussed by Stokes. He realized that he had ‘no 

explanation for the imperfect but, nevertheless, 
roughly equal spacing’ of bounding surfaces in 
aeolian sandstones. However, this regularity can be 
expected of climbing translatent strata. As discussed 
above and as illustrated below by equation (1 l ) ,  the 
thickness of a climbing translatent stratum is a 
function of dune height and the rate of downwind 
decrease in the transport rate. Consequently, the 
thicknesses of climbing translatent strata can be 
expected to be relatively constant when they are 
deposited by a train of two-dimensional regular 
dunes moving through an area in which the wind is 
relatively steady. 

Stokes’ model can be modified slightly to eliminate 
some of its weaknesses by assuming that the water 
table stands at or just below the level of the dune 
troughs while the dunes migrate without climbing. 
If the water table then quickly rises above the level 
of the dune troughs, interdune ponds appear, and 
sand that is stripped from the dune crests fills the 
interdune ponds. For a coset of cross-strata to form, 
new dunes must migrate in and the process be 
repeated. Although all but the last step in this 
sequence has been observed in modern dune trains 
(Hunter, 1977b), the modified Stokes model is 
geometrically identical to Stride’s (1965) model (Fig. 
3D) and suffers from the same geometrical defects 
when proposed as a general explanation for cosets of 
aeolian cross-strata. 

RECOGNITION O F  BEDFORM 
CLIMBING 

When a bedform climbs at a steeper angle than the 
stoss slope of the bedform downstream (supercritical 
climb in the terminology of Hunter, 1977a, or what 
we refer to here by an alternative term, stoss- 
depositional climb), the entire bedform surface is 
preserved (Fig. 4A). Many examples of structures 
formed by stoss-depositional climbing ripples have 
been documented, not because such structures are 
especially common, but because preservation of the 
entire bedform makes climbing easy to recognize. In 
the vast majority of deposits, however, bedforms 
climb at subcritical or stoss-erosional angles and 
other criteria must be used to identify climbing. In 
the authors’ experience less than 1 % of climbing 
translatent strata deposited by wind ripples in dunes 
of the south Texas and Pacific coasts climb at stoss- 
depositional angles. From theoretical considerations 
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Fig. 4. Criteria by which climbing may be recognized. All photographs are of modern aeolian sands deposited by climbing 
wind ripples. In all photographs the exposure is horizontal, the sand was deposited on a surface that sloped toward the 
top of the photograph, and the ripples were migrating in an alongslope direction. Similar features can be seen in vertical 
exposures of deposits formed by climbing ripples. (A) Climbing recognizable by preservation of entire bedform surface 
in supercritically or stoss-depositional climbing ripples (near top of photograph). (B) Climbing recognizable. by a few 
clearly correlative ripple-foreset cross-laminae (marked by arrows) in three adjacent translatent strata, which are other- 
wise without easily visible ripple-foreset cross-laminae. (C) Climbing recognizable by angular relation between the climb- 
ing translatent strata and the underlying and overlying isochronous strata. An exceptional example of a coset of cross- 
strata recognizable as having been deposited by climbing bedforms is present in a photograph by Nio (1976, fig. 7.4). 
The figure illustrates a coset of cross-strata with bounding surfaces dipping upcurrent, similar to Fig. 4(C), but larger 
scale. (D) Climbing recognizable by change in the angle of climb of translatent strata, which have no visible ripple- 
foreset cross-laminae. Angle of climb is relatively low in the dark-coloured sand, relatively high in the light-coloured 
sand. 

discussed below, stoss-depositional climb could be 
expected to  be somewhat more common in sub- 
aqueous ripples but even less common in aeolian 
dunes and subaqueous sand waves. 

Stoss-erosional climb is usually difficult t o  
recognize, but under relatively rare circumstances 
structures formed by stoss-erosional climbing bed- 
forms can be recognized by identifying distinctive 
layers that were deposited simultaneously on  the lee 
slopes of several adjacent bedforms (Fig. 48). To 
identify bedform climbing by this method requires 
that a distinctive type of sediment be delivered 
simultaneously t o  adjacent bedforms and requires an 
outcrop length of a t  least two, and preferably more, 
bedform spacings (tens of  centimetres for ripples to 
as much as tens of kilonietres for the largest aeolian 
dunes or draas). 

Other features that can sometimes be used t o  
recognize bedform climbing are: (1) a n  angular 
relation between climbing translatent strata and the 
isochronous o r  more nearly isochronous underlying 
or overlying strata or bounding surfaces of the set of  
translabent strata (Fig. 4C); and (2) a change in the 

angle of bedform climb within a coset of translatent 
strata (Fig. 4D), the change having taken place 
simultaneously across the bedform field (Hunter, 
1977b, fig. 5) .  Features of these types are quite coni- 
mon in structures formed by subaqueous and aeolian 
climbing ripples. They are much less recognizable in 
structures formed by large-scale subaqueous and 
aeolian bedforms, because, for reasons given below, 
such bedforms can usually be expected to  climb at  
very low angles. Consequently, even a relatively large 
change in the angle of climb (a factor of two, for 
example) may not be visible. 

Except for artificial marking of foresets by tracer 
grains, none of the climbing translatent strata that 
Hunter (1977b, fig. 3) observed in the process of 
formation contained any direct evidence of climbing. 
When direct evidence of climbing is not available, 
climbing can sometimes be inferred from indirect 
evidence. F o r  example, climbing translatent strata 
deposited by trains of regular two-dimensional bed- 
forms should be characterized by uniformity of 
thickness and large areal extent with respect to 
st ra t um thickness. 
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CLIMBING IN THEORY 

Angle of climb 

Climbing can be described by a vector of translation, 
V, which defines the speed and direction of bedform 
migration through three-dimensional space (Fig. 2A). 
Following Allen (1970), the vector Vmay be resolved 
into a component V, parallel to the generalized de- 
positional surface and equal to V cos 5 and a com- 
ponent V, normal to the surface and equal to Vsin 5 
(Fig. 2B). The angle 5 is the angle of climb; the 
equation for its tangent is 

V tan 5 = 2 
Va!' 

The component V, is the net rate of deposition, 
defined as the rate of displacement of the generalized 
sediment surface in the i-direction. Thus, 

where t is time, and 7 is the distance in the z-direction 
from the datum plane (where z = 0) to the general- 
ized sediment surface. Spatial averaging over some 
convenient distance, which must be at least one bed- 
form spacing, and averaging over some convenient 
time-scale are to be understood without special 
notation. 

Equation (2) allows V,  to be expressed in terms of 
the sediment continuity equation (Middleton & 
Southard, 1978; Smith, 1977), which states the 
principle of conservation of sediment mass or, 
assuming constant bulk density, sediment bulk 
volume: 

(3) 

where i is the spatially averaged bulk volume sedi- 
ment transport rate across a unit length of deposi- 
tional surface (dimensions of 13/lt = P / t ,  where I is 
length), and c is the spatially averaged bulk volume 
of sediment in transport, either as bed load or 
suspended load, above a unit area of the depositional 
surface (dimensions of / 3 / 1 2  = I). Equation (3) states 
that at a point on the bed the rate of deposition 
(hli3t) is equal to the rate of decrease of sediment 
transport with distance downstream (- ai/ax) plus 
the rate of decrease of the concentration of sediment 
in the flow through time (- &/at ) .  Throughout the 
following discussion all sediment transport rates are 
bulk volume rates, and sediment porosity and density 
are assumed constant. The inclusion of only one 

spatial partial derivative (ai/ax) in equation ( 3 )  
implies the assumption that sediment transport is 
entirely in the direction of bedform migration; if this 
is not true, ailax must be replaced by (ai,/ax+ 
ai,/ay), where i ,  and i ,  are the components of i in 
the x- and y-directions. It should be noted that Allen 
(1970, p. 18) gives an incorrect term in place of 

The component V ,  is the rate of bedform migra- 
tion across the sediment surface. As shown in detail 
by Simons, Richardson & Nordin (1965), V, can be 
related to the part of the sediment transport rate 
involved in bedform migration, hereafter called the 
bedform transport rate, ib, and to the bedform height, 
H ,  by the equation 

a c p t .  

ib 
Va! = kH (4) 

where k = A J L H ;  A ,  is the cross-sectional area of 
the bedform in the xz-plane, and L is the bedform 
spacing or wavelength ; for triangular bedforms 
touching one another end-to-end, k = f. The bed- 
form transport rate, ib, plus what we will hereafter 
refer to as the throughgoing transport rate, i,, make up 
the total transport rate, i (Fig. 5). As Middleton & 
Southard (1978) noted, the bedform transport rate 
is not necessarily equivalent to the bedload transport 
rate, because bedload as well as suspended load may 
bypass bedforms. For example, much of the bedload 
transport over aeolian ripples bypasses the ripples, 
does not contribute to ripple migration, and can 
therefore be called throughgoing transport. On the 
other hand, sediment suspended above the stoss 
slopes of large bedforms may be deposited on lee 
slopes and thereby contribute to bedform migration. 
Thus the bedform transport rate can either be 
greater than the bedload transport rate (where 
suspended sediment is deposited on lee slopes) or 
less than the bedload transport rate (where bedload 
sediment bypasses bedforms). 

In equation (4) the migration rate is expressed in 
terms of the bedform transport rate averaged over 
one bedform spacing. In some studies the transport 
rate has been related to ihcr the bedform migration 
rate at the bedform crest (Bagnold, 1941 ; Kachel & 
Sternberg, 1971; Wilson, 1972), or to the bedform 
transport rate across a fixed line that initially lies 
along the bedform crest (Bokuniewicz, Gordon & 
Kastens, 1977). The local bedform.transport rate at 
the crest is related to the bedform migration rate by 
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Fig. 5. Diagram Illustrating bulk-volume sediment trans- 
port rates. The sawtooth transport rate curve represents 
the total transport over any point on the bed. i ,  is trans- 
port across bedform troughs, or the throughgoing trans- 
port. i, is total transport measured at a bedform crest. 
it,, is the bedform transport rate measured at a bedform 
crest. i and ib are respectively the total transport rate and 
the bedform transport rate averaged over one bedform 
spacing, L. 

where is equal to  (iL- i,); i, is the rate of sediment 
transport across the bedform crest, and ibC represents 
that part involved in bedform migration (Fig. 5). 
The value of i, is measurable only a t  bedform 
crests; elsewhere the value is interpolated. 

As can be seen by comparing equations (4) and 
( S ) ,  and as  Kachel & Sternberg (1971) implied, the 
average bedform transport rate of triangular bed- 
forms is half the bedform transport rate a t  the crest. 
The various transport-rate and migration-rate 
equations have not always been adequately dis- 
tinguished. For example, in relating aeolian dune 
migration to  the sand transport predicted from wind 
measurements, Inman, Ewing & Corliss (1966) did 
not make it clear whether their wind measurements 
reflected flow over the dune crest o r  flow averaged 
over the entire dune. 

Combining equations ( I ) ,  (2), (3), and (4), it is 
found that 

An equally valid equation could be developed using 
equation ( 5 )  in place of equation (4). Equation (6) 
may usefully be modified t o  

(7) 
XH ail tan!: = - - . - ' ( l + A + B )  

It, ax 

where A = (ai,/ax)/(ai,,/ax), and B = (&/at)/ 
(?;,,/C~X). If transport is not entirely in the direction 
of  bedform migration, A must be replaced by 
A,+ A,, where A ,  = (ai,,/iIx)/(ai,,/k), and A, = 
( ~ i ~ ~ / ~ y ) / ( ~ ; , , / ~ , ~ ~ .  A large value of Av helps t o  

produce large angles of  climb in bedforms that are 
oblique or nearly longitudinal to  the flow. The two 
dimensionless numbers A and Bexpress the two ways 
in which high concentrations of suspended sediment 
can help produce high angles of climb. When the 
volume of sediment in transport above the bed at  a 
given time (c) is large, the volume may decrease 
rapidly through time and thus produce large values 
of B and tan 5. Similarly, when the rate of through- 
going sediment transport (if) is large, it may decrease 
rapidly downstream and thus produce large values of 
A and tan 5. 

The equation describing bedform climb simplifies 
considerably when A and B equal zero. The term A 
approaches zero in flows where bedforms are good 
traps for the sediment crossing their crests, or in other 
words where the bedform transport rate is large with 
respect to  the throughgoing transport rate (ib S- if). 
This condition is approximated in many flume flows 
over medium- and coarse-grained sand waves that 
are not transitional with upper-regime flat beds 
(Simons ef al., 1965). Large sand waves in deep flows 
may or may not be better traps than small ones in 
shallow flows, depending on whether or not the 
deeper troughs and larger lee eddies of large bed- 
forms are able to  compensate in sediment-trapping 
ability for the increased transport above the bed in 
deep flows. Transverse aeolian dunes are especially 
good traps for the sediment crossing their crests 
(Wilson, 1972) because most transport occurs near 
the bed. The rarity or absence of large stoss- 
depositional climbing bedforms in the geological 
record suggests that large bedforms are indeed very 
good traps. On the other hand, the rate of through- 
going transport can approach or exceed the bedform 
transport rate in flows over antidunes, flows over 
sand waves that are transitional with upper-regime 
flat beds, flows over subaqueous ripples and fine- 
grained sand waves, flows over aeolian ripples, and 
flows in which abundant suspended sediment is 
inherited from previous or upstream conditions (e.g. 
turbidity currents). 

The term B approaches zero in flows where 
deposition is caused primarily by a downstream 
decrease in the transport rate, not by a decrease 
through time. When sediment transport decreases 
through time but not downcurrent, the volun~e of 
sediment available to  produce a deposit is limited to  
the volume in transport a'bove the depositional site. 
In all but deep, turbid flows above small bedforms, 
the volume of sediment in transport above a bedform 
is much less than the volume of the bedform itself. 
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Where sediment transport decreases downcurrent, 
in contrast, the volume of sediment available for 
deposition (all sediment upstream from a depositional 
site) is essentially unlimited. When A and B both 
equal zero, as is approximately true for many flows 
over large two-dimensional bedforms, 

k H  di t a n < =  --.-b 
~b dx' 

Thickness of a climbing translatent stratum 

If the direction of the bedform-climb vector and the 
attitude of the generalized depositional surface 
remain constant during deposition, the thickness, T, 
of a climbing translatent stratum (Fig. 2B) is related 
to the angle of climb and to bedform spacing by the 
equation (Brookfield, 1977) 

(9) 
For angles of climb less than 17", sin < may be 
approximated by tan < with no more than 5 % 
error. Such angles include any subcritical or stoss- 
erosional angle of climb for almost any conceivable 
bedform. Using this approximation to relate 
equations (8) and (9), 

T = L sin [. 

kHL dib T E - - -  
lb  . dx' 

The equation for T can be developed somewhat 
further for flows in which the bedform transport rate 
decreases linearly with distance downstream and in 
which bedforms are not created or destroyed. An 
approximately Iinear decrease in transport can be 
expected in many flows, but only in exceptional flows 
are bedforms not created or destroyed. Flows meet- 
ing these conditions are discussed first, not because 
they are typical, but because the analysis is simpler. 
Analysis of the case where bedforms are created and 
destroyed follows. 

The assumptions of bedform conservation and 
steady flow conditions lead to the conclusion that 
bedform period (L/V, ,  the time for a bedform to 
migrate one spacing) is constant. (Constancy of wave 
period where waves are neither created nor destroyed 
is demonstrated by Eagleson & Dean, 1966, pp. 21- 
24, for water waves, but their analysis applies equally 
to bedforms.) Where bedform period is constant, L 
is proportional to V ,  and, because kHV,  is equal to 
ib (equation 4),  it follows from equation (10) that 
KHLIik, is constant, and T is proportional to dib/dx. 
Thus, where the bedform transport rate decreases 
linearly downcurrent, c/i,,/d..u is constant, and 

consequently the thickness ( T )  of a climbing trans- 
latent stratum is constant downstream. 

Assuming a linear decrease in the bedform trans- 
port rate from an upstream value, it,,,, at location xu, 
to a downstream value, ibd, at location x,l (Fig. 5), 
defining the distance from xu to xd as D, assuming 
k = 3, substituting kHV,  for ib (equation 4), and 
remembering that the bedform period is equal to 
L /  VT, equation (10) becomes 

Where either H or L decreases linearly with distance 
downstream, and where transport out of a deposi- 
tional area, represented by (HL),,, is very small with 
respect to transport in, (HL),, it can be shown (see 
Appendix) that, with less than 10 error, 

- 
HL T E -  
D 

where the overbar denotes spatial averaging from 
xu to xd. Equation (12) states that the thickness of a 
cross-stratified bed is equal to twice the mean bed- 
form cross-sectional area (area = =/2) divided by 
the length of the depositional area. 

The thickness of a climbing translatent stratum 
can be calculated by an independent method which 
does not involve assumptions of constancy of bed- 
form number or period. As bedforms climb, the 
generalized sediment surface moves upward, and 
sediment once contained within bedforms is left 
as climbing translatent strata. In other words, 
deposits gain sediment while bedforms lose sediment. 
In steady flows where bedforms are free to decrease 
in both size and number (Fig. 6), the cross-sectional 
area of a coset of cross-strata deposited by a train of 
bedforms (Acoset) is equal to the cross-sectional area 
of sediment lost by bedforms in the train. The cross- 

0 

Fig. 6. Diagram illustrating deposition of a coset ofcross- 
stratified beds by a tiain of bedforms free to decrease in 
both cross-sectional area, kHL,  and number, N ,  while 
migrating a distance, D. (ME),, is cross-sectional area 
of bedforms at upcurrent end of area, ( N k Z h  is cross- 
sectional area of same bedforms after their migration to 
downcurrent end of area, A,,,,, is cross-sectional area of 
the coset of cross-strata produced during migration of the 
bedforms, and T is thickness of a set. Diagram has 
extreme vertical exaggcration. 



Bedforrn climbing 129 

sectional area of sediment in the train at any time is 
equal to N k E ,  where N is the number of bedforms 
in the train at that time, and k a i s  their mean cross- 
sectional area. Thus, 

A,,,,t = (NkHL),- (NkHL)d, (1 3) 
In flows where each cross-stratified bed extends 
downcurrent for the entire distance that its deposit- 
ing bedform migrated, the mean thickness of indivi- 
dual cross-stratified beds within a coset is equal to 
coset cross-sectional area divided by the distance, D, 
over which the observed decrease in ( N k K )  occurs, 
and divided by f, the mean number of bedforms in 
the train. Defining C as ( N k ~ ) , l ( N k ~ ) , , .  

(14) 
- (NkE),(  1 - C) T E  

ND 
In modern flows, N can be defined conveniently as 
the bedform frequency (V,/L). Equation (14) is the 
general equation relating bed thickness to bedform 
size. Where the downstream cross-sectional area of 
the train is small compared to that upstream, C 
approaches zero, and equation (14) simplifies to 

- (NkHL), TE-. 
ND 

Equations (14) and (15) illustrate that deposition 
can occur as the result of downcurrent decreases in 
size and/or number of bedforms migrating over the 
bed. Where the bedform number is constant, and 
where the bedform cross-sectional area linearly 
approaches zero downcurrent, the upstream bedform 
cross-sectional area is twice the bedform cross- 
sectional area averaged throughout the depositional 
area, and equation (15) reduces to 

- 
(16) 

Similarly, equation (14) reduces to equation (16) 
where bedform cross-sectional area is constant and 
bedform number linearly approaches zero down- 
current. Thus, whether or not bedform number is 
constant, where bedform transport intoa depositional 
area is large compared to transport out, mean bed 
thickness is approximately equal to twice the mean 
bedform cross-sectional area divided by the length 
of the depositional area. 

The two mechanisms discussed above decrease in 
bedform size and decrease in bedform number, 
should produce sand bodies with different character- 
istics. Where deposition occurs with a decrease in 
bedform size, the number of cross-stratified beds 
could be expected to remain relatively constant 
downcurrent. Where deposition occurs with a down- 

- HL 
T2:  -. D 

9 

current decrease in bedform number, the number of 
beds deposited during any time interval should 
decrease downcurrent. Where the transport rate 
decreases linearly downcurrent, the mean thickness 
of sets deposited by shrinking bedforms should be 
uniform throughout a depositional area; the mean 
thickness of sets deposited by bedforms decreasing in 
number should be greater downcurrent than up- 
current. 

Perhaps the most useful application of bedform 
climbing theory is in calculating the heights of bed- 
forms that deposited ancient cross-strata. Equation 
(16) can be modified for this purpose by substituting 
HI for L; I is the bedform spacing-to-height ratio, 
called the bedform index. Solving for bedform height, 
equation (16) becomes 

H N g)'. (17) 

Application of equation (17), using field observations 
to calculate heights of bedforms that deposited 
cross-stratified beds, is illustrated in the discussion 
of aeolian sandstones. 

- 

Bed thickness relative to bedform height 

When interpreting cross-strata, some sediment- 
ologists make what we feel to be an erroneous 
assumption, that bed thickness is nearly equal to 
bedform height. For example, Scheidegger & Potter 
(1967, p. 40) state 'It is assumed that the total height 
of a layer of cross-bedded sediments corresponds to 
the height of the sand-waves in a stream. Although 
not precisely true, the thickness of the vast majority 
of cross-bedded units appears to closely approximate 
the original dune height.' Scheidegger & Potter did 
not state how they determined heights of their 
dunes. Similarly, Brush (1965, p. 32) gave the more 
qualified suggestion that 'most, perhaps 80 %, of 
the dunes are represented in full height by their 
cross-stratified remanants. Obviously this statement 
is a subject worthy of discussion and perhaps future 
research.' Saunderson & Jopling (1980) made a 
similar but more qualified suggestion that set thick- 
ness is equal to four-fifths of bedform height. 

Where sediment transport is entirely by down- 
current bedform migration, mean bed thickness can 
approach mean bedform height only where the 
depositional area is restricted in length to a single 
bedform spacing (equation 16). Equation (16) also 
explains why the largest modern aeolian dunes or 
draas are an order of magnitude greater in height 
than the thickest preserved aeolian cross-stratified 
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beds. Because depositional areas typically extend 
for many bedform spacings, bed thickness is likely 
to be only a small fraction of bedform height. The 
basic difficulty in preserving the total thickness of 
the lee-slope deposits is that total preservation 
requires stoss slopes to be non-erosional. Under this 
restriction, two problems arise: ( I )  providing an 
alternative source for sediment deposited on lee 
slopes, and (2) providing a mechanism for transport- 
ing that sediment without eroding stoss slopes. 

Not all flows are limited by restrictions used in 
the above analysis, and bedforms may be largely 
preserved: (1) where sediment is deposited rapidly 
from suspension over a bedform train; (2) where 
bedforms in a train are three-dimensional or varied 
in size and climb at varying angles, possibly preserv- 
ing some individual bedforms; or (3) where bedforms 
are longitudinal or oblique, rather than transverse. 
It would be desirable to have a method of estimating 
original bedform height independently of the method 
represented by equation (17). The only methods that 
we know of for estimating the original bedform 
height with reasonable accuracy are: (1) determining 
the bedform spacing from the angular relation 
between the climbing translatent strata and iso- 
chronous surfaces, and dividing the spacing by an 
appropriate bedform index; and (2), where cross- 
strata are curved convex-up near the top of a set, 
extrapolating the curve to its maximum height by an 
appropriate mathematical formula. 

Several characteristics of cross-strata seem to vary 
with bedform size or with vertical position on the 
bedform but are not yet well enough understood to 
serve as bases for estimating original bedform height. 
For example, the plan-view radius of curvature of 
cross-strata probably implies a certain maximum 
bedform size, because the contour lines on a bedform 
of given size probably cannot be curved more than a 
certain degree. As another example, the thickness 
and width of sandflow cross-strata probably vary 
with slipface height, at least in aeolian dunes, and the 
characteristics of sandflow cross-strata vary with 
vertical position on the slipface (Hunter, 1977b). As 
still another example, the proportions of sandflow, 
grainfall, slump, and other deposits probably vary 
with dune size and with vertical position on a dune 
(Hunter, 1977b). 

Two controls of bedform size 

In quasi-steady natural flows, bedform size is 
controlled by at least two kinds of processes - 

SEDIMENT TRANSPORT RATE ( g / m . s e c l  

Fig. 7. Log log plot of cross-sectional area of equilibrium 
sand waves as a function of measured sediment transport 
rate for all flows with 0.93 mm sand in data of Guy, 
Simons & Richardson (1966, table 6); bedform cross- 
sectional area is proportional to the transport rate raised 
to a power of 0.61. I n  flows with other sediment sizes, 
cross sectional area of equilibrium sand waves is propor- 
tional to the sediment transport rate raised to exponents 
commonly in the range of 0.25 to 3.0. Curve calculated 
by linear regression. 

processes that determine equilibrium bedform size 
and processes that cause bedforms to change in size 
while acquiring or losing sediment during erosion or 
deposition. It is a remarkable coincidence, but 
apparently no more than coincidence, that when 
conditions change downcurrent in some natural 
flows, these two independent processes require a 
similar response. 

When flow depth and sediment size are constant, 
the equilibrium size of bedforms in flumes increases 
with an increase in flow velocity, until the sand-wave 
and dune phase becomes transitional with the upper 
flat-bed phase (Yalin, 1964; Stein, 1965; Guy e ta / . ,  
1966, tables 2-5; Kennedy, 1969; Pratt & Smith, 
1972). In a steady non-uniform flow of constant 
depth, therefore, equilibrium processes, like deposi- 
tional-erosional processes, tend to make bedforms 
(that are not transitional with upper flat beds) grow 
smaller where a flow decelerates downcurrent and 
make them larger where flow accelerates. 

Not only are the trends imposed by equilibrium 
processes and depositional-erosional climbing 
processes similar, but in some flume flows the two 
processes apparently can operate at similar rates 
(Fig. 7). In flows where bedforms are perfect traps, 
the climbing model requires that bedforms increase 
in cross-sectional area or in number in downcurrent- 
accelerating non-uniform flows. Where bedforms 
respond only by increasing in size downcurrent, the 
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Fig. 8. Photograph of side-scan sonar record of two-dimensional bedforms decreasing in size 
downcurrent (left to right); from San Francisco Bay, California. 

climbing model requires that average bedform cross- 
sectional area at different locations in a bedform train 
be proportional to the local bedform transport rate. 
Equilibrium processes observed in flumes indicate 
that, with some sediment sizes, the cross-sectional 
area of equilibrium bedforms is also approximately 
proportional to the sediment transport rate (Fig. 7). 
Thus, in some steady non-uniform flows, climbing 
could be expected to help keep bedform size in equi- 
librium or to considerably reduce the lag distance, 
which is the distance that bedforms must migrate 
before regaining equilibrium with a flow that has 
changed (Allen, 1974). Equilibrium processes and 
depositional-erosional processes require such a 
similar response that in some cases they may be 
indistinguishable. For example, superimposed 
bedforms observed at one instant in time commonly 
increase in height and spacing from the trough to 
the crest of larger bedforms on which they occur, in 
both subaqueous flows (McCave, 1971, fig. 5D) and 
aeolian flows (Fig. 8; Breed & Grow, 1979, figs 
I74A and D). This increase in size may be the result 
of bedforms growing to maintain equilibrium as 
flow accelerates from trough to crest of the large 
bedforms (Rubin & McCulloch, 1980). Alternatively, 
the superimposed bedforms may increase in size as 

the result of negative climbing (bedform migration 
accompanied by net erosion). 

The observation that aeolian dunes inciease in 
size in some downstream-accelerating flows may be a 
clue that the equilibrium size of aeolian dunes, like 
the equilibrium size of subaqueous dunes in flumes, 
increases with flow velocity. Wilson (1972) suggested 
that the spacing of equilibrium dunes increases with 
wind speed, but to our knowledge there have been no 
empirical studies of the equilibrium size of aeolian 
dunes with which to test these ideas. 

If the condition of constant flow depth, assumed 
in the previous discussion, is relaxed, then equilibrium 
processes and climbing processes may require 
conflicting bedform response. For example, in the 
flume data collected by Guy et al. (1966) sand waves 
and dunes in flows 30 cm deep are 1-5 to 2 times as 
large in cross-sectional area as those in flows 15 cm 
deep, for any constant transport rate. Consequently, 
in flows where the sediment transport rate is constant 
but depth changes downcurrent, equilibrium con- 
siderations may require that bedform size changes, 
and depositional-erosional considerations may re- 
quire that size remain constant. What happens in 
nature has yet to be documented. One possibility is 
that climbing constraints cause changes in size to 
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lag behind downcurrent flow changes, until bedform 
size is so different from equilibrium size for local 
flow conditions that small bedforms coalesce or 
large ones split to form more nearly equilibrium- 
sized bed forms. Equilibrium processes are inferred 
to have the greatest possibility of overcoming 
climbing processes in:  (1) flows in which bedforms 
are poor traps; (2) flows in which bedforms are 
frequently created or destroyed; and (3) flows where 
flow conditions change very gradually downcurrent. 

Trains and fields of bedforms that exhibit syste- 
matic downcurrent variations in height and spacing 
occur in tidal flows in San Francisco Bay, California 
(Fig. 8), Long Island Sound, New York (Bokuniewicz 
et al., 1977), Bay of Fundy, Canada (Middleton, 
personal communication), Vineyard Sound, Massa- 
chusetts (Briggs, Rubin & Southard, 1981), North 
Sea (Stride, 1970; McCave, 1971), Willapa Bay, 
Washington (Phillips, 1979) and St Andrew Bay, 
Florida (Salsman, Tolbert & Villars, 1965). In at 
least two examples downcurrent decreases in bedform 
size occur concurrently with deposition (Salsman 
et al., 1965; Briggs et al., 1981). In one example the 
pattern is reversed, and bedforms decrease in size in 
an erosional area (Phillips, 1979). In the North Sea, 
Stride (1970) concluded that sand-wave merging, 
rather than shrinking, provided sediment for 
deposition. 

Like bedform size, bedform cross-sectional shape 
(particularly the concavity or convexity of stoss 
slopes) may be controlled, in part, by deposition and 
erosion. For example, where a downcurrent change 
in the transport rate results in bedforms containing 
too much sediment to attain equilibrium height and 
spacing, bedforms might develop stoss slopes that 
are more convex upward, as an alternative to increas- 
ing in height or spacing. Similarly, the bedform index 
(spacing-to-height ratio) may be influenced by down- 
current changes in the transport rate and the result- 
ing acquisition or loss of sediment by bedforms. 

Discussion of assumptions 

Many of the assumptions made in developing this 
model of bedform climbing cannot confidently be 
expected to apply to three-dimensional bedforms. 
For example, of the numerous assumptions made 
above, we suspect that the one likely to cause the 
largest error is the assumption that all bedforms in a 
depositional area deposit beds that are preserved. 
This assumption can be expected to be a good 
approximation for trains of regular two-dimensional 

bedforms, but where bedforms in a train are variable 
in size, and particularly where the angle of climb is 
extremely low, not all bedforms will leave deposits 
that survive the passage of following bedforms. In 
such a case, mean bed thickness can still be expected 
to be a fraction of bedform height, but calculated 
heights will be too large. Using modal bed thickness, 
rather than mean bed thickness, in equation (17) has 
the effect of eliminating or considerably reducing this 
error in cosets of cross-stratified beds where the 
thicknesses of individual sets follow normal or log- 
normal distributions. 

The assumption that bedforms are perfect traps 
( A  is zero) might also be expected to be most closely 
approximated in trains of two-dimensional bed forms. 
With any constant sediment size and flow depth, 
two-dimensional bedforms generally exist at lower 
flow velocities than do  three-dimensional bedforms 
(Allen, 1968; Southard, 1975; Dalrymple e f  al., 1978; 
Rubin & McCulloch, 1980). In the higher-velocity 
flows over three-dimensional bedforms, sediment 
could be more likely to bypass lee slopes in 
suspension. Furthermore, three-dimensional bed- 
forms have discontinuous troughs and downcurrent- 
streaming spurs and ridges that leak sediment from 
one bedform to another. Where bed forms are not per- 
fect traps, calculated bedform heights will be too large. 

Another assumption made in developing this 
model is that bedform crests are normal to net trans- 
port (A, is zero). An error in this assumption will 
produce calculated bedform heights that are either 
too large or too small, depending on whether the 
component of transport parallel to bedform crests 
decreases downcurrent (A ,  is positive) or increases 
downcurrent ( A ,  is negative). 

A few of the equations developed above are based 
on the assumption that the transport rate out of a 
depositional area is very small with respect to the 
transport rate in (Cis zero). A failure of this assump- 
tion will result in calculated bedform heights that are 
too small. Despite the potential errors in making 
these assumptions, calculated bedform heights appear 
to be considerably better approximations of actual 
heights of two-dimensional bedforms than are the 
thicknesses of their sets of cross-strata. 

BEDFORM CLIMBING IN NATURE 

Sand waves in St Andrew Bay, Florida 

This train of sand waves (Salsman et al., 1965) is 
ideal for testing ideas about bedform climbing, not 
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only because many of the equation-simplifying 
assumptions appear to be met but also because 
Salsman et al. observed for two years bedform 
height, spacing, and migration rate at a site where 
there is direct evidence of bedform climb-an increase 
in mean bed level. They noted: 

‘As each sand ridge passes a given point, however, 
many of the grains situated in the trough are left 
behind because the current transport capacity in the 
troughs is not great enough to remove all the grains 
deposited there by the previous ridge. The mean bed 
level is thus elevated a small amount as each ridge 
passes. . .’ 

‘About 120 cm beneath the trough level . . . the 
sediment type changes abruptly from sand to clay. 
This clay is apparently the “mud” referred to as the 
surface sediment in pre-1934 nautical charts. Thus, 
some 120 cm of sand have been deposited at  the study 
site in the 30years since the Corps of Engineers 
excavated the man-made channel. During this 30 
years some ten ridges have passed the study site . . . 
Thus, assuming that bed-load transport is theprimary 
mode of sediment movement at the site, each ridge 
has apparently left behind a layer of sand averaging 
12 cm thick.’ 

The St Andrew Bay sand waves are also ideal 
because the following assumptions can be made. 

(1) The sand waves occur in a tidal flow having 
peak spring-tide velocities of only 40 cm s-l at 55 cm 
above the bed. At these low velocities suspended 
sand transport probably is not significant, and the 
sand waves are probably very good sediment traps. 

(2) According to Salsman ef a/., the sand waves 
are ‘remarkably uniform ’ transverse sand ridges. 
This property allows an assumption of two- 
dimensionality, and the extreme regularity shown in 
their fathometer profile (Salsman et a/., 1965, fig. 2) 
implies, for reasons discussed above, that sand waves 
are neither created nor destroyed at the depositional 
site ( N  is constant). 

(3) The St Andrew Bay sand-wave migration 
period, L/V, ,  is so long ( 3 4  y) compared to tidal 
periods (hours and weeks) that the tidal flow can be 
thought of as a steady flow, and the tidal periodicity 
as high-frequency noise that can be ignored. 

The thickness of cross-stratified beds deposited by 
St Andrew Bay sand waves can be calculated using 
equation (14) and either of two observations made 
by Salsman et a/.  (1965): (1) changes in size under- 
gone by a single bedform during migration, or (2) 
changes in size exhibited spatially by bedforms in a 
train observed at a single time. In the first case, 

Table 1. Changes in size undergone by a migrating sand 
wave in St Andrew Bay, Florida (all dimensions in centi- 
metres) 

Upstream height H, = 58 
Upstream spacing L, = 1820 
Downstream height Hd = 49 
Downstream spacing L d  = 1780 
Depositional extent D = 1144 
Calculated bed thickness T = 8 

Table 2. Changes in size exhibited spatially by train of 
sandwaves in St Andrew Bay, Florida (all dimensions in 
centimetres) 

Upstream height H,, = 58 
Upstream spacing L, = 1820 
Downstream height Hd = 0 
Depositional extent D = 1 0 4  
Calculated bed thickness 7‘ = 5 

substituting in equation (14) the observed changes in 
size undergone by a single bedform during migration, 
mean bed thickness is calculated to be 8 cm (Table 1). 
In other words, the observed bedform lost sediment 
at  a rate such that it deposited a cross-stratified bed 
8 cm thick. 

In the second calculation, using changes in size 
exhibited spatially by bedforms in a train, bed thick- 
ness is calculated to be 5 cm (Table 2). In this 
example equation (14) states that if all the sediment 
contained in the large upstream bedforms were 
distributed uniformly throughout the depositional 
area, layers 5 cm thick would be produced. Relative 
to the 58-cm sand-wave height, bed thicknesses 
calculated using equation (14) are in good agreement 
with the 12-cm thickness calculated by Salsman eta/., 
and all three calculated values are only a small 
fraction of bedform height. Differences between the 
three calculated values may reflect a non-linearity in 
the downcurrent decrease in the transport rate, un- 
steadiness caused by deposition of 120 cm of 
sediment during the last 30 y of bedform migration, 
differences in behaviour between individual bed- 
forms, or the total disappearance of bedforms that 
reached the downcurrent end of the sand-wave field. 

Modern aeolian dunes of the Oregon coast 

Allen (1968, 1980) and Banks (1973) have illustrated 
what is probably a very common condition under 
which bedforms climb : the migration of bedforms 
down the lee slope of a larger bedform or isolated 
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Fig. 9. Data documenting the climbing of dunes down the 
lee slope of a large sand mound near Lily Lake Road, 
Oregon. (A) Topographic profile and schematic portrayal 
of one set of cross-strata. Line A-A' represents the atti- 
tud? of the generalized lee slope of the mound, and B-B 
represents the calculated attitude and thickness of a set of 
crossbeds formed by the climbing of a dune down the lee 
slope from xu to xd. (B) Average velocities at 2 m above 
dune crests; each point represents average of three 
measurements at each of two points along a given dune 
crest. (C)  Average dune heights (from toe of slipface to 
dune crest). (D) Average dune migration during the period 
of observation. (E) Average bulk-volume sediment trans- 
port at dune crests during the period of observation; in 
(C) ,  (D), and (E), each point represents an average of four 
to nine measurements along a given dune. Curves in B-E 
calculated by linear regression analysis. 

sedimentary mound. Brookfield (1977, 1979), in an 
application of this concept to an ancient aeolian 
sandstone, has interpreted sets of cross-strata 
bounded by so-called second-order surfaces as the 
products of dunes that climbed down the lee slopes 
of still larger bedforms (draas). A probable modern 
example of such a process can be seen in dunes of the 
Oregon coast just south of Lily Lake Road, about 
13 km north of the town of Florence (latitude 
44" OS'N, longitude 124" 07'W). 

In the Lily Lake area, barchanoid dunes migrate 
to the south-south-east under the influence of nearly 
unidirectional sand-transporting winds during the 
dry summer months (Cooper, 1958, plate 3, locality 
19). Each dune appears to be a nearly perfect trap 
for sand blown over the crest. The dunes migrate 
over a sand mound that is 16 m high and 380 m wide 
in the direction of sand transport (Fig. 9). Dune 
heights, dune migration rates, and wind veIocities 
were measured at selected points, particularly on the 
lee slope of the mound, on 22 and 23 June 1979. The 
greatest wind speeds and greatest bedform transport 
rates (calculated by equation 4) were observed at the 
summit of the mound. Wind speed, dune height, dune 
migration, and bedform transport all showed a 

general decrease down the lee slope of the mound 
(Fig. 9). If the wind conditions observed on the two 
days persisted for a sufficient length of time, the 
average angle of climb would have been 0.3", and 
the average thickness of the climbing translatent 
strata, calculated from equation (14), would have 
been 0.3 m, one-tenth the average dune height. A 
similar solution (T = 0.4 m) is obtained, without 
observations of dune migration, using the observed 
downwind decrease in dune height (Fig. 9c) and 
equation (14). 

Aeolian sandstones 

Existence of dune climbing 
Aeolian sandstones are particularly attractive targets 
for applying the concepts of bedform climbing, 
because the tightly clustered, unimodal dip directions 
of many such sandstones have been interpreted as the 
result of deposition transverse dunes (McKee, 1979), 
which are relatively two-dimensional and nearly 
perfect sediment traps. The high trapping efficiency 
of aeolian transverse dunes follows from the fact that 
aeolian sand transport is dominantly in the form of 
saltation and creep and occurs very near the ground, 
especially when considered relative to the scale of the 
dune. Reasons for accepting a dominantly aeolian 
origin for various sandstones characterized by large- 
scale crossbedding, especially sandstones of Pennsyl- 
vanian to Jurassic age in the western interior United 
States, have recently been summarized by McKee 
(1979) and Hunter (1981). 

The large-scale sets of crossbeds found in many 
aeolian sandstones are prime candidates for having 
been formed by the climbing of large dunes or draas, 
because they have several characteristics expected of 
the deposits of climbing bedforms: grouping of sets 
into a coset (Fig. l ) ,  large length of a set (with respect 
to set thickness) in the direction of crossbed dip, and 
unimodality or acute bimodality of crossbed dip 
directions. Weber (1979), for example, found that the 
set length in the De Chelly Sandstone (Permian) 
averages 200 times the set thickness. Data sum- 
marized by McKee (1979, p. 195) show a narrow 
range of crossbed dip directions in many of the 
aeolian sandstones of the Colorado Plateau. 

The tabular sets of crossbeds in aeolian sandstones 
have the additional expected characteristic of uni- 
formity of set thickness within a coset, a feature noted 
by Stokes (1968) but not explained by his hypothesis. 
The trough-shaped sets of crossbeds have the 
additional expected characteristic of much greater 
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Table 3. Observations used to calculate heights of dunes or draas that deposited three aeolian sandstone formations 

Downcurrent depositional 
extent ( D )  (km) 

Individual Entire Calculated 
Forma tion Bed thickness ( T )  (m) beds formation dune heights ( H )  (m) - 

Navajo Sandstone 10* 1.6t 300% 331450 
De Chelly Sandstone 4.5 0 0.95 250$ 161270 
Entrada Sandstone 77 3.57 I - 401- 

* Estimated from range of 6 1 5  m given by Peterson & Pipiringos (1979). 
t Stokes (1968). 
f: From maps of Poole (1962). 
9: Weber (1979). 
7 Kocurek (1981), first-order sets. 

lateral extent in the direction of crossbed dip than 
in a transverse direction (Kocurek, 1981); this feature 
likewise is not explained by Stokes’ hypothesis. 
Preserved stoss slopes between major bounding 
surfaces, a feature required by Stokes’ hypothesis, 
occur very rarely if at all in the aeolian sandstones of 
the Colorado Plateau. 

Definitive evidence that large-scale sets of cross- 
beds in aeolian sandstones were formed by bedform 
climbing is very difficult to establish, in part because 
the angles of climb were probably very low and in 
part because, as discussed below, the dunes or draas 
were probably very large. Recognition of bedform 
climbing becomes especially complicated where the 
bedforms are arranged in a hierarchy of sizes. 
Brookfield (1 977, 1979), for example, identified three 
orders of sets of crossbeds in a Permian aeolian sand- 
stone of Scotland, and he interpreted the first- and 
second-order sets as products of climbing draas and 
dunes, respectively. His interpretation of the second- 
order sets is based on a systematic angular relation 
between the second- and first-order bounding 

surfaces, but his interpretation of the first-order sets 
is, although reasonable, not based on definitive 
evidence. 

The best documentation that we know of for the 
origin of first-order scts of aeolian crossbeds by the 
climbing of large dunes or draas is in Kocurek’s 
(1981) study of the Entrada Sandstone (Jurassic) of 
north-east Utah and north-west Colorado. Kocurek 
shows that the first-order bounding surfaces climb 
(with respect to a formational boundary and to a 
thin shale bed that can be regarded as relatively 
isochronous) in the direction of crossbed dip. In 
addition, he presents evidence that interdune ponds 
and wet flats climbed with the large dunes or draas, 

as hypothesized for modern dunes at White Sands 
by McKee & Moiola (1975). The modal angle of 
climb is only a few tenths of a degree. 

Dune size 
The size of dunes that deposited aeolian sandstones 
can be calculated by substituting in equation (17) a 
value of 15 for I, the bedform index (Wilson, 1972), 
and by using the measured bed thicknesses for T. In 
general, downcurrent depositional extent, D, cannot 
be determined accurately, because deposition may 
not have occurred simultaneously over the entire area 
covered by an aeolian sandstone. However, a lower 
limit for the depositional extent is the downcurrent 
extent of individual cross-stratified beds (Table 3). 
Using these values in equation (17), dunes that 
deposited the Navajo Sandstone (Triassic? and 
Jurassic), the De Chelly Sandstone (Permian), and 
the Entrada Sandstone (Jurassic) are calculated to 
have had mean heights greater than 16-40 m (Table 
3). Actual heights may have been considerably 
higher. 

I f  the total downcurrent extent of aeolian strata in 
a formation is used for depositional extent, calculated 
bedform heights are an order of magnitude higher: 
270-450 m. These surprisingly high values suggest 
that: ( I )  deposition was localized and did not occur 
simultaneously over the entire area where each 
aeolian sandstone occurs; (2 )  these sandstones were 
deposited by oblique or longitudinal rather than 
transverse bedforms; or (3) the ancient bedforms 
were as large as the largest modern dunes or draas. 
This last possibility is not entirely unreasonable, 
because these sandstones contain the thickest aeolian 
cross-stratified beds that we know of (as much as 
33 m in the Navajo Sandstone; McKee, 1979, p. 212). 
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Field observations made by Kocurek (1981) in the 
Entrada Sandstone are  useful for comparison with 
the calculations made above. Kocurek determined 
mean bedform spacing t o  be 1500m by measuring 
the distances between bounding surfaces along a 
stratigraphic horizon that he inferred was a de- 
positional surface contemporaneous with the bed- 
forms. Modern dunes having spacings of 1500 m have 
heights of about 1 0 0 m  (Wilson, 1972), and it is 
reasonable to  assume that the Entrada dunes also 
were approximately 100 m in height. Relative t o  the 
7 m mean bed thickness, this value is in good 
agreement with the minimum height of 4 0 m  
calculated using equation (17). If bedform climbing 
theory were ignored and draa height were assumed 
t o  be equal t o  bed thickness, inferred bedform height 
would be too low by more than a n  order of 
magnitude. 

CONCLUSIONS 

(1) Large transverse two-dimensional aeolian and 
subaqueous bedforms deposit cross-stratified beds by 
decreasing in size and/or in number while migrating 
downcurrent. 
(2) Bed thickness is usually a fraction of bedform 
height; the thickness of aeolian beds is only a small 
fraction of dune height. 
(3) The thickness of a cross-stratified bed can be 
calculated from changes in size exhibited by a single 
bedform during migration, and in special cases bed 
thickness can be calculated from variations exhibited 
spatially by bedforms in a train. 
(4) Where specified conditions are met, mean bed- 
form height can be calculated from mean bed thick- 
ness, downcurrent bed extent, and bedform spacing/ 
height index. 
( 5 )  Dunes that deposited cross-stratified beds in the 
Navajo, De Chelly, and Entrada Sandstones are 
calculated t o  have had mean heights greater than 
several tens of metres and probably as much as 
several hundreds of metres. 
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APPENDIX 

In the development of equation (12) from equation 
(ll),  it is assumed that either H or L decreases 
linearly with distance downstream and that (HL)d % 
(HL),. Assuming first that L decreases linearly, 
equation (1 1) reduces to 

HuLu T 2 -  2 0  
where L,, is related to L by the equation L = +(L,+ 
Ld). Equation (12) is  exactly equivalent to equation 
(l la) when Ld = 0, in which case H is constant, 
and when L,, = L, = L, in which case H, = 2 g .  To 
test whether equation (12) is a sufficiently close 
approximation of equation (1 la) for values of Ld/L, 
between zero and unity, an equation must be 
developed that relates H, H,, L,, and Ld and that 
involves no approximation beyond those used in 
developing equation (1 1 a). 

By definition, 
- 
H = i J f H d x .  

Given the assumptions used in the development of 
equations (1 1) and (I  la), and with no loss ofgenerality 

letting xu = 0 and xd = D, it can be shown that 

a x + b  
c x + d  

H =  - 

where a = (HL),, b = (HL),D, c = Ld-L., and 
d = L,D. Tables of integrals show that 

ad+ bc. ln(cx + d )  + C a x + b  - d x =  -+- 
c c2 

where C is the constant of integration. 
Evaluating the integral between 0 and D and putting 
a, b, c, and d back into terms of H,, L,, Ld, and D, 

Rearranging and substituting into equation (1 la), 
it is found that 

Equation (12) approximates equation (1 lb) to within 
10 % for any value of L,,/L, from zero to unity. A 
similar result is obtained if H instead of L decreases 
linearly with distance downstream. 
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